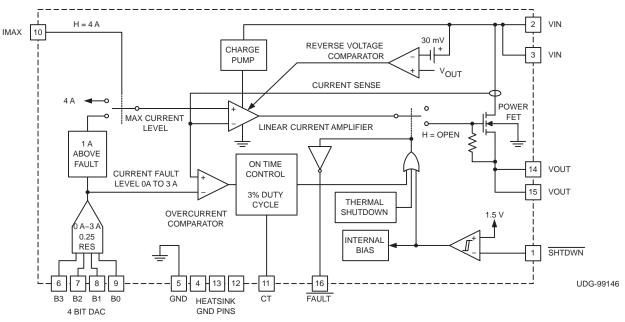
## Unitrode Products from Texas Instruments

#### UCC2912 UCC3912 PROGRAMMABLE HOT SWAP POWER MANAGER SLUS241D – MARCH 1994 - REVISED NOVEMBER 2003

- Integrated 0.15-Ω Power MOSFET
- 3-V to 8-V Operation
- Digital Programmable Current Limit from 0 A to 3 A
- Electronic Circuit Breaker Function
- 1µA I<sub>CC</sub> When Disabled
- Programmable On-Time
- Programmable Start Delay
- Fixed 3% Duty Cycle

### Unidirectional Switch

- Thermal Shutdown
- Fault-Output Indicator
- Maximum-Output Current Can Be Set to 1 A Above the Programmed Fault Level or to a Full 4 A
- Power SOIC, Low-Thermal Resistance Packaging


### description

The UCC3912 family of hot swap power managers provides complete power management, hot swap capability, and circuit breaker functions. The only component required to operate the device, other than supply bypassing, is the fault timing capacitor,  $C_T$ . All control and housekeeping functions are integrated, and externally programmable. These include the fault current level, maximum output-sourcing current, maximum fault time, and startup delay. In the event of a constant fault, the internal fixed 3% duty cycle ratio limits average output power.

The internal 4-bit DAC allows programming of the fault level current from 0 A to 3 A with 0.25-A resolution. The IMAX control pin sets the maximum sourcing current to 1 A above the fault level when driven low, and to a full 4 A when driven high for applications which require fast output capacitor charging.

When the output current is below the fault level, the output MOSFET is switched on with a nominal on resistance of 0.15  $\Omega$ . When the output current exceeds the fault level, but is less than the maximum sourcing level, the output remains switched on, but the fault timer starts charging C<sub>T</sub>. Once C<sub>T</sub> charges to a preset threshold, the switch is turned off, and remains off for 30 times the programmed fault time. When the output current reaches the maximum sourcing level, the MOSFET transitions from a switch to a constant current source. (continued)

### block diagram





Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

PRODUCTION DATA information is current as of publication date. Products conform to specifications per the terms of Texas Instruments standard warranty. Production processing does not necessarily include testing of all parameters.



Copyright © 2003, Texas Instruments Incorporated

## **UCC2912** UCC3912 PROGRAMMABLE HOT SWAP POWER MANAGER

SLUS241D - MARCH 1994 - REVISED NOVEMBER 2003

### description (continued)

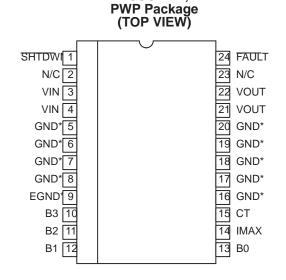
The UCC3912 family is designed for unidirectional current flow, emulating an ideal diode in series with the power switch. This feature is particularly attractive in applications where many devices are powering a common bus, such as with SCSI Termpwr.

The UCC3912 family can be put into sleep mode drawing only 1-µA of supply current. The SHTDWN pin has a preset threshold hysteresis which allows the user the ability to set a time delay upon startup to achieve sequencing of power. Other features include an open drain FAULT output indicator, thermal shutdown, under voltage lockout, and a low thermal resistance small outline package.


absolute maximum ratings over operating free-air temperature (unless otherwise noted)<sup>†‡</sup>

| VIN                                                  | 8 V                    |
|------------------------------------------------------|------------------------|
| FAULT sink current                                   | 50 mA                  |
| FAULT voltage                                        |                        |
| Output current                                       |                        |
|                                                      |                        |
| (B0, B1, B2, B3, IMAX, SHTDWN)                       | 0.3 to V <sub>IN</sub> |
| Storage temperature range, T <sub>stg</sub>          | -65°C to 150°C         |
| Operating junction temperature range, T <sub>J</sub> | -55°C to 150°C         |
| Lead temperature (soldering, 10 sec.)                |                        |

<sup>†</sup> Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.


<sup>‡</sup>Currents are positive into, negative out of the specified terminal. Consult Packaging Section of the Interface Products Data book (TI Literature Number SLUD002) for thermal limitations and considerations of packages.

### package information



**DIL-16, SOIC-16** 

\*Pin 5 serves as lowest impedance to the electrical ground; Pins 4, 12, and 13 serve as heat sink/ground. These pins should be connected to large etch areas to help dissipate heat. For N package, pins 4, 12, and 13 are N/C.



TSSOP-24.

\*Pin 9 serves as lowest impedance to the electrical ground; other GND pins serve as heat sink/ground. These pins should be connected to large etch areas to help dissipate heat.



electrical characteristics, these specifications apply for  $T_{\Delta} = -40^{\circ}$ C to 85°C for the UCC2912;  $T_{A} = 0^{\circ}$ C to 70°C for the UCC3912, VIN = 5 V, IMAX = 0.4 V, SHTDWN = 2.4 V (unless otherwise stated)

#### supply section

| PARAMETER           | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
|---------------------|-----------------|-----|-----|-----|-------|
| Voltage input range |                 | 3.0 |     | 8.0 | V     |
| Supply current      |                 |     | 1.0 | 2.0 | mA    |
| Sleep mode current  | SHTDWN = 0.2 V  |     | 0.5 | 5.0 | μΑ    |

NOTE 1: All voltages are with respect to ground. Current is positive into and negative out of the specified terminal.

#### output section

| PARAMETER               | TEST CONDITIONS                                                             | MIN | ТҮР  | MAX  | UNITS |
|-------------------------|-----------------------------------------------------------------------------|-----|------|------|-------|
| Voltage drop            | I <sub>OUT</sub> = 1 A                                                      |     | 0.15 | 0.22 | V     |
|                         | $I_{OUT} = 2 A$                                                             |     | 0.3  | 0.45 | V     |
|                         | I <sub>OUT</sub> = 3 A                                                      |     | 0.45 | 0.68 | V     |
|                         | I <sub>OUT</sub> = 1A, VIN = 3 V                                            |     | 0.17 | 0.27 | V     |
|                         | I <sub>OUT</sub> = 2 A, VIN = 3 V                                           |     | 0.35 | 0.56 | V     |
|                         | I <sub>OUT</sub> = 3 A, VIN = 3 V                                           |     | 0.5  | 0.8  | V     |
| Reverse leakage current | V <sub>IN</sub> < V <sub>OUT</sub> , SHTDWN = 0.2 V, V <sub>OUT</sub> = 5 V |     | 5    | 20   | μA    |
| Initial startup time    | See Note 2                                                                  |     | 100  |      | μs    |
| Short circuit response  | See Note 2                                                                  |     | 100  |      | ns    |
| Thermal shutdown        | See Note 2                                                                  |     | 170  |      | °C    |
| Thermal hysteresis      | See Note 2                                                                  |     | 10   |      | °C    |

NOTE 1: All voltages are with respect to ground. Current is positive into and negative out of the specified terminal.

NOTE 2: Ensured by design. Not production tested.

#### DAC section

| PARAMETER                               |               | TEST CONDI           | TIONS                    | MIN  | ТҮР  | MAX  | UNITS |
|-----------------------------------------|---------------|----------------------|--------------------------|------|------|------|-------|
| Output leakage                          | utput leakage |                      |                          |      | 0    | 20   | μA    |
|                                         |               | Code = 0100          |                          | 0.1  | 0.25 | 0.45 | А     |
|                                         |               | Code = 0101          |                          | 0.25 | 0.50 | 0.75 | А     |
|                                         | Code = 0110   |                      | 0.5                      | 0.75 | 1.0  | А    |       |
|                                         |               | Code = 0111          |                          | 0.75 | 1.00 | 1.25 | А     |
|                                         |               | Code = 1000          |                          | 1.0  | 1.25 | 1.5  | А     |
|                                         | Code = 1001   |                      | 1.25                     | 1.50 | 1.75 | А    |       |
| Trip current                            |               | Code = 1010          | 1.5                      | 1.75 | 2.0  | А    |       |
|                                         |               | Code = 1011          | 1.7                      | 2.00 | 2.3  | А    |       |
|                                         |               | Code = 1100          | 1.9                      | 2.25 | 2.58 | А    |       |
|                                         |               | Code = 1101          | Code = 1101              |      |      |      | А     |
|                                         |               | Code = 1110          |                          | 2.3  | 2.75 | 3.2  | А     |
|                                         |               | Code = 1111          |                          | 2.5  | 3.0  | 3.5  | А     |
| Maximum output current                  |               | Code = 0000 to 0011  |                          |      |      | 0.02 | mA    |
| Maximum output current over trip UCC291 |               | Code = 0100 to 1111, | $I_{MAX} = 0 V$          | 0.5  | 1.0  | 2.0  | А     |
| (current source mode)                   | UCC3912       | Code = 0100 to 1111, | $I_{MAX} = 0 V$          | 0.5  | 1.0  | 1.8  | А     |
| Maximum output current (current source  | ce mode)      | Code = 0100 to 1111, | I <sub>MAX</sub> = 2.4 V | 3.0  | 4.0  | 5.2  | А     |

NOTE 1: All voltages are with respect to ground. Current is positive into and negative out of the specified terminal.



#### **UCC2912** UCC3912 PROGRAMMABLE HOT SWAP POWER MANAGER SLUS241D – MARCH 1994 - REVISED NOVEMBER 2003

# electrical characteristics, these specifications apply for $T_A = -40^{\circ}C$ to 85°C for the UCC2912; $T_A = 0^{\circ}C$ to 70°C for the UCC3912, VIN = 5 V, IMAX = 0.4 V, SHTDWN = 2.4 V (unless otherwise stated)

#### timer section

| PARAMETER            |         | TEST CONDITIONS         | MIN   | ТҮР   | MAX   | UNITS |
|----------------------|---------|-------------------------|-------|-------|-------|-------|
| CT charge current    |         | V <sub>CT</sub> = 1.0 V | -45.0 | -36.0 | -22.0 | μΑ    |
|                      | UCC2912 | V <sub>CT</sub> = 1.0 V | 0.72  | 1.20  | 1.57  | μΑ    |
| CT discharge current | UCC3912 | V <sub>CT</sub> = 1.0 V | 0.72  | 1.20  | 1.50  | μΑ    |
| Output duty cycle    |         | $V_{OUT} = 0 V$         | 2.0   | 3.0   | 6.0   | %     |
| CT fault threshold   |         |                         | 1.3   | 1.5   | 1.7   | V     |
| CT reset threshold   |         |                         | 0.4   | 0.5   | 0.6   | V     |

NOTE 1: All voltages are with respect to ground. Current is positive into and negative out of the specified terminal.

#### shutdown section

| PARAMETER           | TEST CONDITIONS | MIN | TYP | MAX | UNITS |
|---------------------|-----------------|-----|-----|-----|-------|
| Shutdown threshold  |                 | 1.1 | 1.5 | 1.9 | V     |
| Shutdown hysteresis |                 |     | 100 |     | mV    |
| Input current       | SHTDWN = 1 V    |     | 100 | 500 | nA    |

#### fault output section

| PARAMETER                | TEST CONDITIONS          | MIN | TYP | MAX | UNITS |
|--------------------------|--------------------------|-----|-----|-----|-------|
| Output leakage current   |                          |     |     | 500 | nA    |
| Low level output voltage | I <sub>OUT</sub> = 10 mA |     | 0.4 | 0.8 | V     |

#### TTL input dc characteristics section

| PARAMETER              | TEST CONDITIONS                        | MIN | TYP | MAX | UNITS |
|------------------------|----------------------------------------|-----|-----|-----|-------|
| TTL input voltage high | (can be connected to V <sub>IN</sub> ) | 2.0 |     |     | V     |
| TTL input voltage low  |                                        |     |     | 0.8 | V     |
| TTL input high current | V <sub>IH</sub> = 2.4 V                |     | 3   | 10  | μA    |
| TTL input low current  | V <sub>IL</sub> = 0.4 V                |     |     | 1   | μΑ    |

NOTE 1: All voltages are with respect to ground. Current is positive into and negative out of the specified terminal.

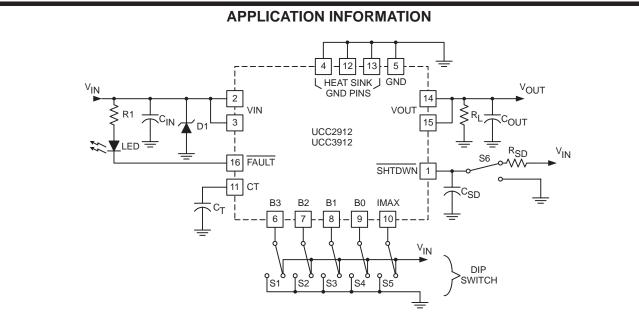
#### pin description

B0-B3: These pins provide digital input to the DAC which sets the fault current threshold. They can be used to provide a digital soft-start, adaptive current limiting.

CT: A capacitor connected to ground sets the maximum fault time. The maximum fault time must be more than the time to charge the external capacitance in one cycle. The maximum fault time is defined as FAULT =  $27.8 \times 10^3 \times CT$ . Once the fault time is reached the output will shutdown for a time given by:  $T_{SD} = 833 \times 10^3 \times CT$ , this equates to a 3% duty cycle.

FAULT: Open drain output which pulls low upon any condition which causes the output to open: fault, thermal shutdown, or shutdown.

**IMAX:** When this pin is set to logic low the maximum sourcing current will always be 1 A above the programmed fault level. When set to logic high, the maximum sourcing current will be a constant 4 A for applications which require fast charging of load capacitance.




### pin description (continued)

**SHTDWN:** When this pin is brought to a logic low, the IC is put into a sleep mode drawing typically less than 1  $\mu$ A of I<sub>CC</sub>. The input threshold is hysteretic, allowing the user to program a startup delay with an external RC circuit.

**VIN:** Input voltage to the UCC3912. The recommended voltage range is 3 V to 8 V. Both VIN pins should be connected together and to the power source.

**VOUT:** Output voltage from the UCC3912. When switched the output voltage will be approximately  $V_{IN}$  – (0.15  $\Omega \times I_{OUT}$ ). Both VOUT pins should be connected together and to the load.

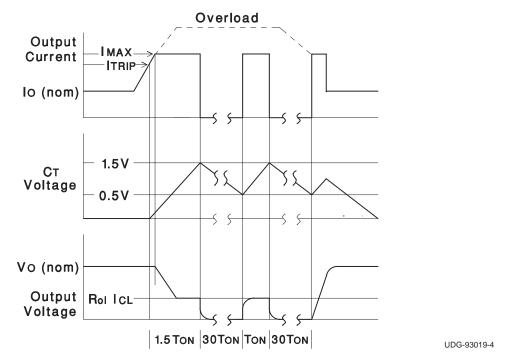


NOTE: For demonstration board schematic see Design Note DN-58 (TI Literature Number SLUA187).

UDG-99171

## Figure 1. Evaluation Circuit

#### protecting the UCC3912 from voltage transients


The parasitic inductance associated with the power distribution can cause a voltage spike at  $V_{IN}$  if the load current is suddenly interrupted by the UCC3912. It is important to limit the peak of this spike to less than 8 V to prevent damage to the UCC3912. This voltage spike can be minimized by:

- Reducing the power distribution inductance (e.g., twist the positive and negative leads of the power supply feeding V<sub>IN</sub>, locate the power supply close to the UCC3912, use a PCB ground plane,...etc.).
- Decoupling V<sub>IN</sub> with a capacitor, C<sub>IN</sub> (refer to Figure 1), located close to pins 2 and 3. This capacitor is typically less than 1 μF to limit the inrush current.
- Clamping the voltage at V<sub>IN</sub> below 8 V with a zener diode, D1 (refer to Figure 1), located close to pins 2 and 3.



## **UCC2912** UCC3912 PROGRAMMABLE HOT SWAP POWER MANAGER

SLUS241D - MARCH 1994 - REVISED NOVEMBER 2003



### **APPLICATION INFORMATION**

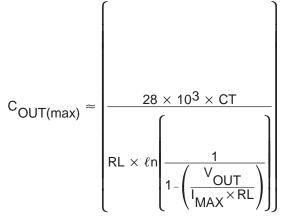
Figure 2. Load Current, Timing-Capacitor Voltage, and Output Voltage of the UCC3912 Under Fault Conditions.

#### estimating maximum load capacitance

For hot-swap applications, the rate at which the total output capacitance can be charged depends on the maximum output current available and the nature of the load. For a constant-current current-limited controller, the output will come up if the load asks for less than the maximum available short-circuit current.

To ensure recovery of a duty-cycle from a short-circuited load condition, there is a maximum total output capacitance which can be charged for a given unit ON time (fault time). The design value of ON or fault time can be adjusted by changing the timing capacitor C<sub>T</sub>.

For worst-case constant-current load of value just less than the trip limit; COUT(max) can be estimated from:


$$C_{OUT(max)} \approx \left(I_{MAX} - I_{LOAD}\right) \times \left(\frac{28 \times 10^3 \times CT}{V_{OUT}}\right)$$

where  $V_{OUT}$  is the output voltage.



## **APPLICATION INFORMATION**

For a resistive load of value RL, the value of C<sub>OUT(max)</sub> can be estimated from:



The overcurrent comparator senses both the DAC output and a representation of the output current. When the output current exceeds the programmed level the timing capacitor  $C_T$  charges with 36  $\mu$ A of current. If the fault occurs for the time it takes for  $C_T$  to charge up to 1.5 V, the fault latch is set and the output switch is opened. The output remains opened until  $C_T$  discharges to 0.5 V with a 1.2- $\mu$ A current source. Once the 0.5 V is reached the output is enabled and will either appear as a switch, if the fault is removed, or a current source if the fault remains. If the over current condition is still present, then  $C_T$  will begin charging, starting the cycle over, resulting in approximately a 3% on time.

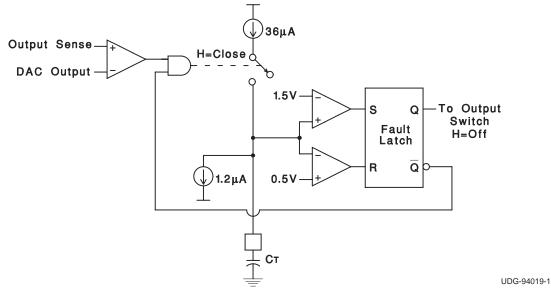
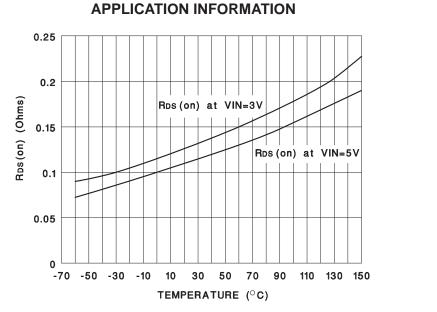




Figure 3. UCC3912 On-Time Circuitry



### UCC2912 UCC3912 PROGRAMMABLE HOT SWAP POWER MANAGER SLUS241D – MARCH 1994 - REVISED NOVEMBER 2003



UDG-94019-1

Figure 4. R<sub>DS(on)</sub> vs. Temperature at 2-A Load Current.

### safety recommendations

Although the UCC3912 family is designed to provide system protection for all fault conditions, all integrated circuits can ultimately fail short. For this reason, if the UCC3912 is intended for use in safety critical applications where UL or some other safety rating is required, a redundant safety device such as a fuse should be placed in series with the device. The UCC3912 will prevent the fuse from blowing virtually for all fault conditions, increasing system reliability and reducing maintenance cost, in addition to providing the hot swap benefits of the device.





## PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package | Pins | Package | Eco Plan     | Lead finish/  | MSL Peak Temp       | Op Temp (°C) | Device Marking | Samples |
|------------------|--------|--------------|---------|------|---------|--------------|---------------|---------------------|--------------|----------------|---------|
|                  | (1)    |              | Drawing |      | Qty     | (2)          | Ball material | (3)                 |              | (4/5)          |         |
|                  |        |              |         |      |         |              | (6)           |                     |              |                |         |
| UCC2912DP        | ACTIVE | SOIC         | D       | 16   | 40      | RoHS & Green | NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | UCC2912DP      | Samples |
| UCC2912PWP       | ACTIVE | TSSOP        | PW      | 24   | 60      | RoHS & Green | NIPDAU        | Level-2-260C-1 YEAR | -40 to 85    | UCC2912PWP     | Samples |
| UCC3912DP        | ACTIVE | SOIC         | D       | 16   | 40      | RoHS & Green | NIPDAU        | Level-2-260C-1 YEAR | 0 to 70      | UCC3912DP      | Samples |
| UCC3912PWP       | ACTIVE | TSSOP        | PW      | 24   | 60      | RoHS & Green | NIPDAU        | Level-2-260C-1 YEAR | 0 to 70      | UCC3912PWP     | Samples |
| UCC3912PWPG4     | ACTIVE | TSSOP        | PW      | 24   | 60      | RoHS & Green | NIPDAU        | Level-2-260C-1 YEAR | 0 to 70      | UCC3912PWP     | Samples |
| UCC3912PWPTR     | ACTIVE | TSSOP        | PW      | 24   | 2000    | RoHS & Green | NIPDAU        | Level-2-260C-1 YEAR | 0 to 70      | UCC3912PWP     | Samples |

<sup>(1)</sup> The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

<sup>(2)</sup> RoHS: TI defines "RoHS" to mean semiconductor products that are compliant with the current EU RoHS requirements for all 10 RoHS substances, including the requirement that RoHS substance do not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, "RoHS" products are suitable for use in specified lead-free processes. TI may reference these types of products as "Pb-Free".

RoHS Exempt: TI defines "RoHS Exempt" to mean products that contain lead but are compliant with EU RoHS pursuant to a specific EU RoHS exemption.

Green: TI defines "Green" to mean the content of Chlorine (CI) and Bromine (Br) based flame retardants meet JS709B low halogen requirements of <=1000ppm threshold. Antimony trioxide based flame retardants must also meet the <=1000ppm threshold requirement.

<sup>(3)</sup> MSL, Peak Temp. - The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

<sup>(4)</sup> There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.

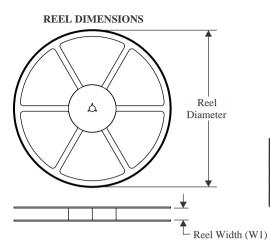
<sup>(5)</sup> Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.

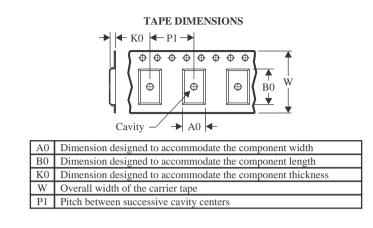
<sup>(6)</sup> Lead finish/Ball material - Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead finish/Ball material values may wrap to two lines if the finish value exceeds the maximum column width.



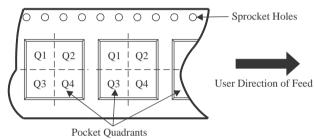
www.ti.com

15-Jan-2023


Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.




www.ti.com

## TAPE AND REEL INFORMATION

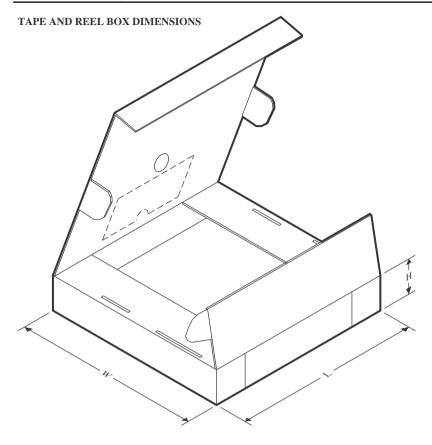




#### QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



| *All dimensions are nominal |  |
|-----------------------------|--|
|                             |  |


| Device       | Package<br>Type | Package<br>Drawing |    | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|----|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| UCC3912PWPTR | TSSOP           | PW                 | 24 | 2000 | 330.0                    | 16.4                     | 6.95       | 8.3        | 1.6        | 8.0        | 16.0      | Q1               |



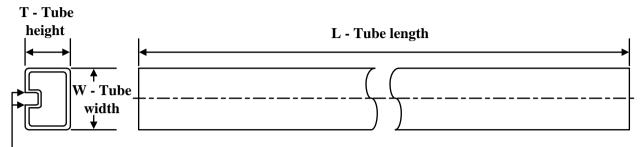
www.ti.com

# PACKAGE MATERIALS INFORMATION

16-Jan-2023



\*All dimensions are nominal


| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |  |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|--|
| UCC3912PWPTR | TSSOP        | PW              | 24   | 2000 | 356.0       | 356.0      | 35.0        |  |

## TEXAS INSTRUMENTS

www.ti.com

16-Jan-2023

## TUBE



## - B - Alignment groove width

#### \*All dimensions are nominal

| Device       | Package Name | Package Type | Pins | SPQ | L (mm) | W (mm) | Τ (μm) | B (mm) |
|--------------|--------------|--------------|------|-----|--------|--------|--------|--------|
| UCC2912DP    | D            | SOIC         | 16   | 40  | 506.6  | 8      | 3940   | 4.32   |
| UCC2912PWP   | PW           | TSSOP        | 24   | 60  | 530    | 10.2   | 3600   | 3.5    |
| UCC3912DP    | D            | SOIC         | 16   | 40  | 506.6  | 8      | 3940   | 4.32   |
| UCC3912PWP   | PW           | TSSOP        | 24   | 60  | 530    | 10.2   | 3600   | 3.5    |
| UCC3912PWPG4 | PW           | TSSOP        | 24   | 60  | 530    | 10.2   | 3600   | 3.5    |

D (R-PDSO-G16)

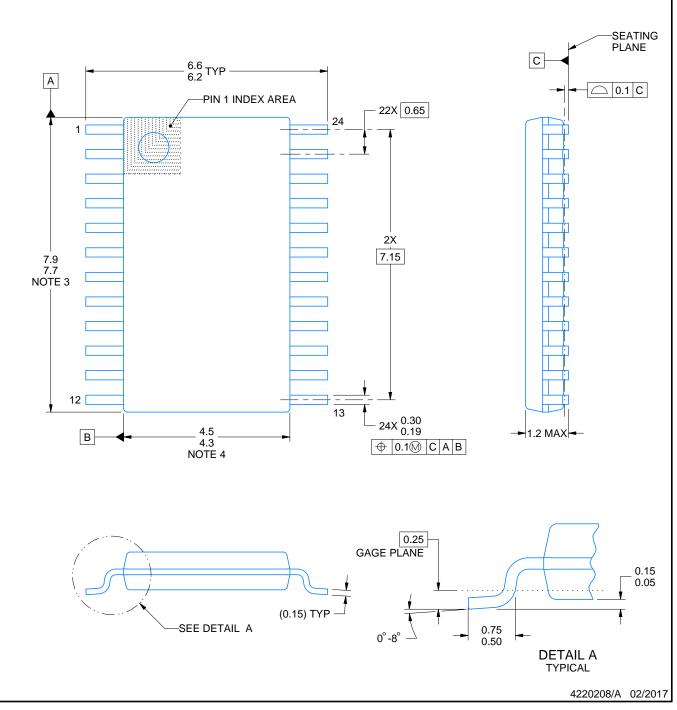
PLASTIC SMALL OUTLINE



NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AC.




# **PW0024A**



## **PACKAGE OUTLINE**

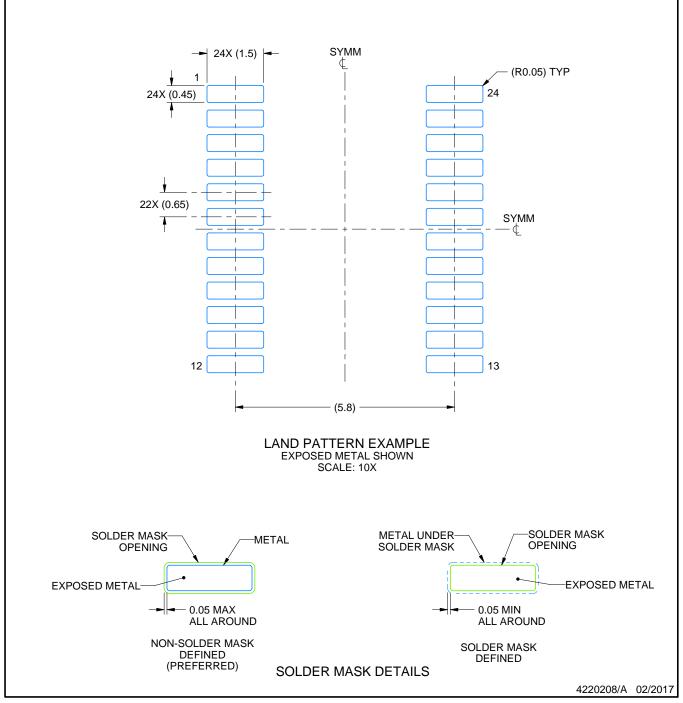
## TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES:

- 1. All linear dimensions are in millimeters. Any dimensions in parenthesis are for reference only. Dimensioning and tolerancing per ASME Y14.5M. 2. This drawing is subject to change without notice. 3. This dimension does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not
- exceed 0.15 mm per side.
- 4. This dimension does not include interlead flash. Interlead flash shall not exceed 0.25 mm per side.
- 5. Reference JEDEC registration MO-153.




# PW0024A

# **EXAMPLE BOARD LAYOUT**

## TSSOP - 1.2 mm max height

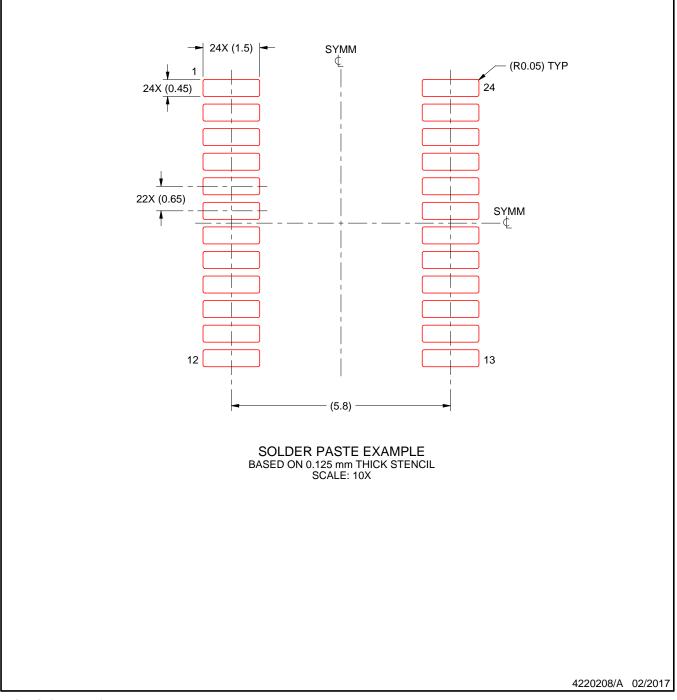
SMALL OUTLINE PACKAGE



NOTES: (continued)

6. Publication IPC-7351 may have alternate designs.

7. Solder mask tolerances between and around signal pads can vary based on board fabrication site.




# PW0024A

# **EXAMPLE STENCIL DESIGN**

## TSSOP - 1.2 mm max height

SMALL OUTLINE PACKAGE



NOTES: (continued)

- 8. Laser cutting apertures with trapezoidal walls and rounded corners may offer better paste release. IPC-7525 may have alternate design recommendations.
- 9. Board assembly site may have different recommendations for stencil design.



## IMPORTANT NOTICE AND DISCLAIMER

TI PROVIDES TECHNICAL AND RELIABILITY DATA (INCLUDING DATA SHEETS), DESIGN RESOURCES (INCLUDING REFERENCE DESIGNS), APPLICATION OR OTHER DESIGN ADVICE, WEB TOOLS, SAFETY INFORMATION, AND OTHER RESOURCES "AS IS" AND WITH ALL FAULTS, AND DISCLAIMS ALL WARRANTIES, EXPRESS AND IMPLIED, INCLUDING WITHOUT LIMITATION ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT OF THIRD PARTY INTELLECTUAL PROPERTY RIGHTS.

These resources are intended for skilled developers designing with TI products. You are solely responsible for (1) selecting the appropriate TI products for your application, (2) designing, validating and testing your application, and (3) ensuring your application meets applicable standards, and any other safety, security, regulatory or other requirements.

These resources are subject to change without notice. TI grants you permission to use these resources only for development of an application that uses the TI products described in the resource. Other reproduction and display of these resources is prohibited. No license is granted to any other TI intellectual property right or to any third party intellectual property right. TI disclaims responsibility for, and you will fully indemnify TI and its representatives against, any claims, damages, costs, losses, and liabilities arising out of your use of these resources.

TI's products are provided subject to TI's Terms of Sale or other applicable terms available either on ti.com or provided in conjunction with such TI products. TI's provision of these resources does not expand or otherwise alter TI's applicable warranties or warranty disclaimers for TI products.

TI objects to and rejects any additional or different terms you may have proposed.

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2023, Texas Instruments Incorporated