

# SGM7227 High Speed USB 2.0 (480Mbps) DPDT Analog Switch

### GENERAL DESCRIPTION

The SGM7227 is a high-speed, low-power double-pole/double-throw (DPDT) analog switch that operates from a single 1.8V to 4.3V power supply.

SGM7227 is designed for the switching of high-speed USB 2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os.

The SGM7227 has low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480 Mbps). Each switch is bidirectional and offers little or no attenuation of the high-speed signals at the outputs. Its bandwidth is wide enough to pass high-speed USB 2.0 differential signals (480 Mb/s) with good signal integrity.

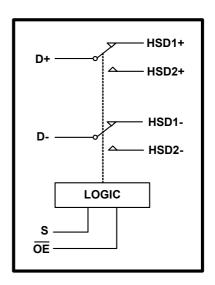
The SGM7227 contains special circuitry on the D+/D-pins which allows the device to withstand a  $V_{BUS}$  short to D+ or D- when the USB devices are either powered off or powered on.

SGM7227 is available in Green UTQFN1.8×1.4-10L and MSOP10 packages. It operates over an ambient temperature range of -40°C to +85°C.

### **APPLICATIONS**

Route Signals for USB 2.0
MP3 and Other Personal Media Players
Digital Cameras and Camcorders
Portable Instrumentation
Set-Top Box
PDAs

### **FEATURES**


- $R_{ON}$  is Typically  $5\Omega$  at 3.0V
- Voltage Operation: 1.8V to 4.3V
- Fast Switching Times:

t<sub>on</sub> 15ns

t<sub>OFF</sub> 20ns

- Crosstalk: -30dB at 250MHz
- Off-Isolation: -35dB at 250MHz
- Rail-to-Rail Input and Output Operation
- Break-Before-Make Switching
- Extended Industrial Temperature Range:
   -40°C to +85°C
- Available in Green UTQFN1.8×1.4-10L and MSOP10 Packages

#### **BLOCK DIAGRAM**



### **SGM7227**

### PACKAGE/ORDERING INFORMATION

| MODEL    | PIN-<br>PACKAGE  | SPECIFIED<br>TEMPERATURE<br>RANGE | ORDERING<br>NUMBER | PACKAGE<br>MARKING | PACKAGE<br>OPTION   |
|----------|------------------|-----------------------------------|--------------------|--------------------|---------------------|
| 00147007 | MSOP10           | -40℃ to +85℃                      | SGM7227YMS10G/TR   | SGM7227YMS10       | Tape and Reel, 3000 |
| SGM7227  | UTQFN1.8×1.4-10L | -40℃ to +85℃                      | SGM7227YUWQ10G/TR  | 7227               | Tape and Reel, 3000 |

### ABSOLUTE MAXIMUM RATINGS

| V <sub>CC</sub> to GND        | 0V to 4.6V                        |
|-------------------------------|-----------------------------------|
| Analog, Digital voltage range | 0.3V to (V <sub>CC</sub> ) + 0.3V |
| Continuous Current HSDn or Dn | ±50mA                             |
| Peak Current HSDn or Dn       | ±100mA                            |
| Operating Temperature Range   | 40°C to +85°C                     |
| Junction Temperature          | 150°C                             |

| Storage Temperature               | 65°C to +150°C |
|-----------------------------------|----------------|
| Lead Temperature (soldering, 10s) | 260°C          |
| ESD Susceptibility                |                |
| HBM (UTQFN1.8×1.4-10L)            | 4000V          |
| MM (UTQFN1.8×1.4-10L)             | 400V           |

#### NOTE:

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

### **CAUTION**

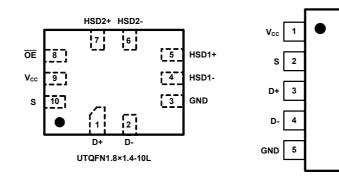
This integrated circuit can be damaged by ESD if you don't pay attention to ESD protection. SGMICRO recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

10 OE

9

MSOP10


HSD2+

HSD2-

HSD1+

HSD1-

# PIN CONFIGURATIONS (TOP VIEW)



### PIN DESCRIPTION

| PIN              |        | NAME            | FUNCTION                  |  |  |
|------------------|--------|-----------------|---------------------------|--|--|
| UTQFN1.8×1.4-10L | MSOP10 | NAIVIE          | FUNCTION                  |  |  |
| 9                | 1      | V <sub>CC</sub> | Power Supply              |  |  |
| 3                | 5      | GND             | Ground                    |  |  |
| 10               | 2      | S               | Select Input              |  |  |
| 8                | 10     | ŌE              | Output Enable             |  |  |
| 5                | 7      | HSD1+           | Multiplexed Source Inputs |  |  |
| 4                | 6      | HSD1-           | Multiplexed Source Inputs |  |  |
| 7                | 9      | HSD2+           | Multiplexed Source Inputs |  |  |
| 6                | 8      | HSD2-           | Multiplexed Source Inputs |  |  |
| 1                | 3      | D+              | USB Data Bus              |  |  |
| 2                | 4      | D-              | USB Data Bus              |  |  |

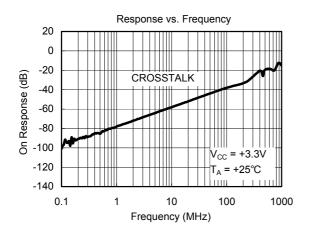
### **FUNCTION TABLE**

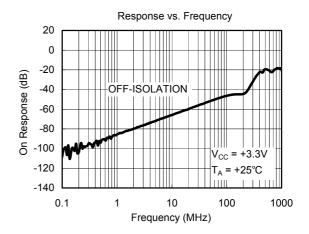
| ŌĒ | S | HSD1+, HSD1- | HSD2+, HSD2- |
|----|---|--------------|--------------|
| 0  | 0 | ON           | OFF          |
| 0  | 1 | OFF          | ON           |
| 1  | × | OFF          | OFF          |

Switches Shown For Logic "0" Input

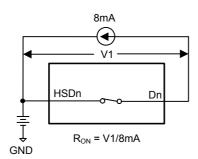
### SGM7227

# **ELECTRICAL CHARACTERISTICS**

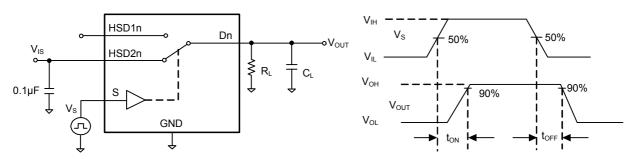

( $V_{CC}$  = +3.3V,  $T_A$  = +25°C, unless otherwise noted.)


| PARAMETER                                          | SYMBOL                                             | CONDITIONS                                                                                | MIN | TYP | MAX             | UNITS |
|----------------------------------------------------|----------------------------------------------------|-------------------------------------------------------------------------------------------|-----|-----|-----------------|-------|
| ANALOG SWITCH                                      |                                                    |                                                                                           |     | •   | •               | •     |
| Analog I/O Voltage<br>(HSD1+, HSD1-, HSD2+, HSD2-) | V <sub>IS</sub>                                    |                                                                                           | 0   |     | V <sub>CC</sub> | V     |
| On-Resistance                                      | R <sub>ON</sub>                                    | $V_{CC}$ = 3.0V, $V_{IS}$ = 0V to 0.4V, $I_D$ = 8mA, Test Circuit 1                       |     | 5   | 9               | Ω     |
| On-Resistance Match<br>Between Channels            | $\Delta R_{\text{ON}}$                             | $V_{CC}$ = 3.0V, $V_{IS}$ = 0V to 0.4V, $I_D$ = 8mA, Test Circuit 1                       |     | 0.3 | 0.8             | Ω     |
| On-Resistance Flatness                             | R <sub>FLAT(ON)</sub>                              | $V_{CC}$ = 3.0V, $V_{IS}$ = 0V to 1.0V, $I_D$ = 8mA, Test Circuit 1                       |     | 1   | 2               | Ω     |
| Power Off Leakage Current (D+, D-)                 | I <sub>OFF</sub>                                   | $V_{CC} = 0V$ , $V_D = 0V$ to 3.6V, $V_S$ , $V_{\overline{OE}} = 0V$ or 3.6 V             |     |     | 1               | μA    |
| Increase in I <sub>CC</sub> per Control Voltage    | I <sub>CCT</sub>                                   | $V_{CC} = 3.6V$ , $V_{S}$ or $V_{\overline{OE}} = 2.6V$                                   |     |     | 5               | μA    |
| Source Off Leakage Current                         | I <sub>HSD2(OFF)</sub> ,<br>I <sub>HSD1(OFF)</sub> | $V_{CC} = 3.6V$ , $V_{IS} = 3.3V/0.3V$ , $V_{D} = 0.3V/3.3V$                              |     |     | 1               | μA    |
| Channel On Leakage Current                         | I <sub>HSD2(ON)</sub> ,<br>I <sub>HSD1(ON)</sub>   | $V_{CC}$ = 3.6V, $V_{IS}$ = 3.3V/ 0.3V, $V_{D}$ = 3.3V/ 0.3V or floating                  |     |     | 1               | μA    |
| DIGITAL INPUTS                                     |                                                    |                                                                                           |     |     |                 |       |
| Input High Voltage                                 | V <sub>IH</sub>                                    |                                                                                           | 1.6 |     |                 | V     |
| Input Low Voltage                                  | V <sub>IL</sub>                                    |                                                                                           |     |     | 0.5             | V     |
| Input Leakage Current                              | I <sub>IN</sub>                                    | $V_{CC}$ = 3.0V, $V_S$ , $V_{\overline{OE}}$ = 0V or $V_{CC}$                             |     |     | 1               | μΑ    |
| DYNAMIC CHARACTERISTICS                            |                                                    |                                                                                           |     |     |                 |       |
| Turn-On Time                                       | ton                                                | $V_{IS} = 0.8V$ , $R_L = 50\Omega$ , $C_L = 10pF$ ,                                       |     | 15  |                 | ns    |
| Turn-Off Time                                      | t <sub>OFF</sub>                                   | Test Circuit 2                                                                            |     | 20  |                 | ns    |
| Break-Before-Make Time Delay                       | $t_D$                                              | $V_{IS}$ = 0.8V, $R_L$ = 50 $\Omega$ , $C_L$ = 10pF, Test Circuit 3                       |     | 3.5 |                 | ns    |
| Propagation Delay                                  | $t_{PD}$                                           | $R_L = 50\Omega$ , $C_L = 10pF$                                                           |     | 0.5 |                 | ns    |
| Off Isolation                                      | O <sub>ISO</sub>                                   | Signal = 0dBm, $R_L$ = 50 $\Omega$ , f = 250MHz, Test Circuit 4                           |     | -35 |                 | dB    |
| Channel-to-Channel Crosstalk                       | X <sub>TALK</sub>                                  | Signal = 0dBm, $R_L$ = 50 $\Omega$ , f = 250MHz, Test Circuit 5                           |     | -30 |                 | dB    |
| –3dB Bandwidth                                     | BW                                                 | Signal = 0dBm, $R_L = 50\Omega$ , $C_L = 5pF$ , Test Circuit 6                            |     | 550 |                 | MHz   |
| Channel-to-Channel Skew                            | t <sub>skew</sub>                                  | $R_L = 50\Omega$ , $C_L = 10pF$                                                           |     | 130 |                 | ps    |
| Charge Injection Select Input to Common I/O        | Q                                                  | $V_G$ = GND, $C_L$ = 1.0nF, $R_G$ = 0 $\Omega$ , $Q$ = $C_L$ x $V_{OUT}$ , Test Circuit 7 |     | 10  |                 | pC    |
| HSD+, HSD-, D+, D-                                 | Con                                                | f = 1MHz                                                                                  |     | 6.5 |                 | pF    |
| ON Capacitance                                     | OON                                                | f = 250MHz                                                                                |     | 7   |                 |       |
| POWER REQUIREMENTS                                 |                                                    |                                                                                           |     |     |                 |       |
| Power Supply Range                                 | Vcc                                                |                                                                                           | 1.8 |     | 4.3             | V     |
| Power Supply Current                               | Icc                                                | $V_{CC} = 3.0V$ , $V_S$ , $V_{\overline{OE}} = 0V$ or $V_{CC}$                            |     |     | 1               | μA    |

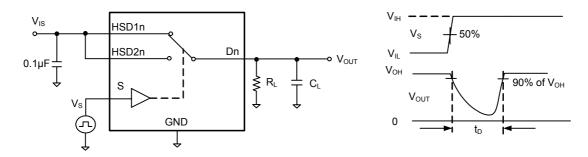
Specifications subject to changes without notice.




# **TYPICAL PERFORMANCE CHARACTERISTICS**

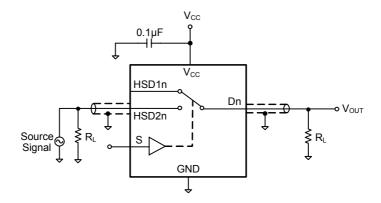




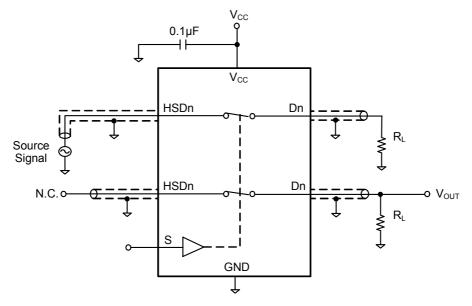


### **TEST CIRCUITS**



Test Circuit 1. On Resistance



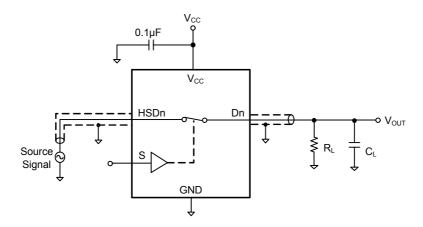

Test Circuit 2. Switching Times (t<sub>ON</sub>, t<sub>OFF</sub>)



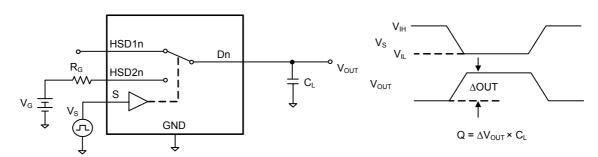

Test Circuit 3. Break-Before-Make Time (t<sub>D</sub>)

# **TEST CIRCUITS (Cont.)**




Test Circuit 4. Off Isolation




Channel To Channel Crosstalk = -20  $\times$  log  $\frac{V_{HSDn}}{V_{OUT}}$ 

Test Circuit 5. Channel-to-Channel Crosstalk

# **TEST CIRCUITS (Cont.)**



Test Circuit 6. -3dB Bandwidth



Test Circuit 7. Charge Injection (Q)

### **SGM7227**

### APPLICATION NOTES

### Meeting USB 2.0 V<sub>BUS</sub> Short Requirements

### **Power-Off Protection**

For a  $V_{BUS}$  short circuit the switch is expected to withstand such a condition for at least 24 hours. The SGM7227 has specially designed circuitry which prevents unintended signal bleed through as well as guaranteed system reliability during a power-down, over-voltage condition. The protection has been added to the common pins (D+, D-).

### **Power-On Protection**

The USB 2.0 specification also notes that the USB device should be capable of withstanding a  $V_{\text{BUS}}$  short during transmission of data. This modification works by limiting current flow back into the  $V_{\text{CC}}$  rail during the over-voltage event so current remains within the safe operating range.

# SGM7227 USB2.0 Signal Quality Compliance Test Results

Figures 1 and 2 show the test results for USB eye diagram tests.

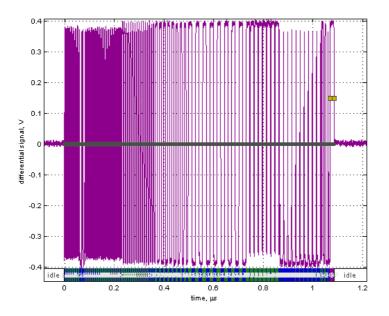



Figure 1. Waveform Plot

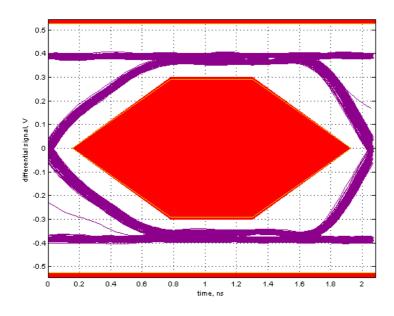



Figure 2. High Speed Signal Quality Eye Diagram Test (V+ = 3.3V)

# High Speed USB 2.0 (480Mbps) DPDT Analog Switch

### SGM7227

The following is a summary of the USB test Results. The SGM7227 passes the high speed signal quality, eye diagram and jitter tests.

#### **Required Tests**

· Overall result:

Pass!

Signal eye:

Eye passes

EOP width: 7.91 bits
 EOP width passes

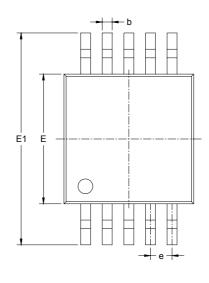
• Measured signaling rate: 480.0551 MHz

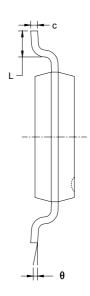
Signal rate passes

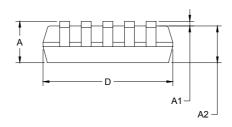
• Rising Edge Rate: 901.28 V/us (710.10 ps equivalent risetime)

**Passes** 

• Falling Edge Rate: 889.18 V/us (719.77 ps equivalent risetime)


**Passes** 

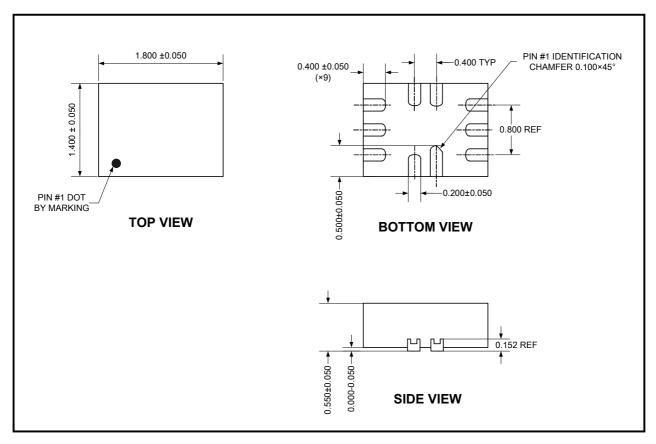

#### **Additional Information**


Consecutive jitter range: -61.770 ps to 39.668 ps, RMS jitter 21.900 ps Paired JK jitter range: -47.800 ps to 42.890 ps, RMS jitter 21.591 ps Paired KJ jitter range: -50.590 ps to 49.704 ps, RMS jitter 23.281 ps

# **PACKAGE OUTLINE DIMENSIONS**

# MSOP10








| Symbol | Dimensions<br>In Millimeters |       | Dimensions<br>In Inches |           |  |
|--------|------------------------------|-------|-------------------------|-----------|--|
|        | Min                          | Max   | Min                     | Max       |  |
| А      | 0.820                        | 1.100 | 0.032                   | 0.043     |  |
| A1     | 0.020                        | 0.150 | 0.001                   | 0.006     |  |
| A2     | 0.750                        | 0.950 | 0.030                   | 0.037     |  |
| b      | 0.180                        | 0.280 | 0.007                   | 0.011     |  |
| С      | 0.090                        | 0.230 | 0.004                   | 0.009     |  |
| D      | 2.900                        | 3.100 | 0.114                   | 0.122     |  |
| Е      | 2.900                        | 3.100 | 0.114                   | 0.122     |  |
| E1     | 4.750                        | 5.050 | 0.187                   | 0.199     |  |
| е      | 0.500 BSC                    |       | 0.020                   | 0.020 BSC |  |
| L      | 0.400                        | 0.800 | 0.016                   | 0.031     |  |
| θ      | 0°                           | 6°    | 0°                      | 6°        |  |

### PACKAGE OUTLINE DIMENSIONS

### UTQFN1.8×1.4-10L



NOTE: All linear dimensions are in millimeters.

#### REV. A

SGMICRO is dedicated to provide high quality and high performance analog IC products to customers. All SGMICRO products meet the highest industry standards with strict and comprehensive test and quality control systems to achieve world-class consistency and reliability.

For more information regarding SGMICRO Corporation and its products, please visit www.sg-micro.com